Влияние антибиотиков на функционирование иммунной системы

Малгожата Поморска-Муль.

Государственный институт ветеринарии – Государственный исследовательский институт в Пулавах.

 

Антибиотики, особенно часто используются в терапии заболеваний свиней. Чаще всего При применении антибиотиков мы чаще думаем об их терапевтическом действии, связанным с бактерицидной или бактериостатической активностью. В тоже время редко обсуждаются вопросы, связанные с другими свойствами препаратов этой группы. Исследования показывают, что антибиотики, кроме очевидного действия на микробы, могут влиять на иммунную систему хозяина, как на неспецифический, так и специфический иммунитет. С учетом этого, антибиотикотерапия не может рассматриваться только как взаимодействие на уровне патоген-лекарство.

Вопросом влияния антибиотиков на иммунную систему занимались многие исследователи. Было установлено, что они могут оказывать на организм токсичное и иммунотоксичное действие.

Антибактериальные препараты используются в терапии из-за своих бактерицидных или бактериостатических свойств. Тип воздействия данной субстанции на микроорганизм, зависит от механизма ее действия, а также от концентрации и времени экспозиции. У разных противомикробных препаратов разный диапазон активности. К наиболее известным явлениям, связанным с действиями антибиотиков, относятся противовоспалительные и иммуномодулирующие свойства, влияющие на функционирование иммунной системы, что будет рассмотрено в этой статье.

Влияние антибиотиков на неспецифический иммунитет

Влияние на функционирование иммунной системы, а именно на неспецифический иммунитет, подтверждено в отношении нескольких антибиотиков из различных групп. Некоторые антибактериальные препараты могут модифицировать функции фагоцитов, меняяпроизводство маркеров и противовоспалительных цитокинов, а также окислительные процессы («кислородный взрыв»). Было доказано, что некоторые антибиотики могут влиять на морфологию, метаболизм и/или вирулентность патогенов, делая их более чувствительными к воздействию клеток иммунной системы. Примером может быть Полимиксин B, который оказывает антиэндотоксическое действие. Это соединение, благодаря связыванию с, так называемым, липидом А, являющимся токсичной частью ЛПС (липополисахарида), нейтрализует активность эндотоксинов. Благодаря этому можно погасить воспаления в организме. Интересно также влияние антибиотиков на активность лейкоцитов и макрофагов в процессе фагоцитоза. Одним из предложенных объяснений явлений, связанных с изменением функционирования фагоцитов конкретным антибиотиком, является влияние на кислородные процессы и нарушение функции систем, продуцирующих свободные радикалы в фагоцитах. За неспецифическое уничтожение патогенов отвечают процессы, генерирующие анионные радикалы. Они могут быть также причиной очень сильного воспалительного процесса (как местного, так и общего). Примерами антибиотиков, ингибирующих выработку свободных радикалов, являются тетрациклины, пенициллины G, аминопенициллины, цефалоспорины. Некоторые антибиотики влияют на производства отдельных свободных радикалов, другие на весь путь активации окислительных ферментов.

Последние исследования показали, что некоторые антибиотики регулируют иммунный ответ, воздействуя на рецепторы Toll-like (TLR), на экспрессию цитокинов и на фагоцитоз. Марбофлоксацин, доксициклин, и эритромицин обладают особенно сильными иммуномодулирующими свойствами и должны быть детально изучены с этой точки зрения, например, в аспекте их использования в лечении сепсиса и других состояний, протекающих с сильным воспалительным процессом.

Из множества групп факторов антибактериальных препаратов к наиболее изученным в аспекте иммуномодулирующего и/или противовоспалительного действия относят препараты группы макролидов, тетрациклинов и сульфонамид.

Остальные группы химиотерапевтических препаратов, т. е. аминогликозиды, хинолоны, бета-лактамы и др., также обладают некоторыми иммуномодулирующими свойствами, но их клиническое значение, как иммуномодуляторов, в настоящее время сравнительно мало изучено. Исследования в этой области чрезвычайно ценны и необходимы.

Макролиды - это группа, включающая в себя ряд природных и полусинтетических антибактериальных соединений. Предполагается, что в основном макролиды с 14- и 15-членным кольцом (в том числе эритромицин и его производные, азитромицин, тулатромицин) имеют значимые иммуномодулирующие и противовоспалительные свойства. Большой интерес к этой группе лекарственных средств в основном связан с их широким спектром действия и низком риске побочных эффектов, по сравнению с другими антибактериальными препаратами.

Эффект воздействия макролидов, в значительной степени зависит от дозы и времени их применения. Считает, что в краткосрочной терапии макролиды усиливают иммунный ответ, что очень важно при инфекционных заболеваниях. А в случае длительного применения, особенно в концентрациях ниже ингибирующих рост микроорганизмов, они могут вызывать иммуносупрессию, противовоспалительное и противоастматическое действие. Макролиды, как иммуностимуляторы, блокируя хемотаксис нейтрофилов к месту воспаления, изменяют их активность, облегчают протекание хронических воспалительных процессов дыхательных путей. Они также ингибируют образование свободных радикалов или вылавливают уже возникшие, что защищает органы дыхания от их воздействия.

Было доказано, что макролиды могут стимулировать фагоцитоз, ускорять и облегчать дифференциацию макрофагов, а также увеличивать киллерную активность макрофагов. В зависимости от концентрации антибиотика и длительность терапии, макролиды могут вызвать существенное снижение кислородных взрывов в фагоцитах, снижать (реже повышать) производство и высвобождение провоспалительных факторов (TNF-a, TNF-γ, IL-1, IL-6, IL-8, IL-10) из лейкоцитов и клеток дыхательного эпителия. Одним из предложенных механизмов, объясняющих описанные выше действия макролидов, является их непосредственное влияние на путь протеинкиназы (PKC) или путь фосфолипазы - фосфогидролазы (PLD-PPH), являющихся частью процесса трансдукции. Это возможно благодаря тому, что макролиды биоаккумулируются  в эукариотических клетках, в том числе в лейкоцитах и макрофагах, благодаря чему они могут эффективнее, чем остальные группы антибиотиков, воздействовать на функции иммунных клеток. Кроме того, допускается, что макролиды, как линкозамиды, влияют на регуляцию экспрессии генов, участвующих в синтезе цитокинов в эукариотических клетках, в частности, подавляют активность транскрипционного ядерного фактора kB (NFkB) в T-клетках, стимулированных TNF и стафилоккоковый токсин (12). Они также могут привести к повышению цикличного уровня АМР, что может в некоторой степени объяснить влияние макролидов на снижение синтеза медиаторов воспаления (12). Подтверждено также ингибирующее действие макролидных антибиотиков на пролиферацию лимфоцитов.

В исследованиях in vitro с использованием фагоцитирующих куриных клеток было доказано, что тилмикозин, благодаря своей липофильной природе, накапливается в фагоцитирующих клетках и приводит к увеличению их липосомальной активности.

Следующая группа антибиотиков, представители которой, как было доказано, влияют на иммунную систему – тетрациклины. Полезные противомикробные свойства и отсутствие серьезных побочных эффектов способствуют их широкому применению при лечении бактериальных инфекций людей и животных. Кроме того, эти антибиотики в течение длительного времени использовались в животноводстве, как стимуляторы роста (АСР) сельскохозяйственных животных. С 1 января 2006 года в Европейском Союзе действует запрет на использование АСР.

В группе тетрациклинов мы выделяем природные и синтетические антибиотики. К природным тетрациклинам относятся: хлортетрациклин, окситетрациклин, тетрациклин и демеклоциклин, а к полисинтетическим тетрациклинам относят, метациклин, доксициклин, миноциклин и ролитетрациклин. Тетрациклины можно разделить на 3 поколения: антибиотики первого поколения, открытые в 1948-1963, второго поколения – 1965-1972 г. и тетрациклины третьего поколения с 90-х годов XX века. Согласно другому разделению, можно выделить тетрациклины нового поколения (например: доксициклин, ролитетрациклин) и тетрациклины старого поколения (например: хлортетрациклин, окситетрациклин, тетрациклин). Препараты нового поколения характеризуются лучшим всасыванием после перорального применения и длительным нахождением в организме.

Кроме хорошо изученного антибактериального воздействия, было доказано, что препараты этой группы имеют иммуномодулирующие и противовоспалительные свойства. Побочные действия тетрациклинов лучше всего проявляются процессами ингибирования функций фагоцитов. Лекарства этой группы могут влиять на снижение активности некоторых ферментов, в частности, эластазы, коллагеназы, желатиназы, выделяемых нейтрофилами или трансформированными клетками. Они снижают также синтез оксида азота и реактивных свободных радикалов в гранулоцитах.

Было доказано, что тетрациклины в своем большинстве подавляют секрецию воспалительных цитокинов. Кажется, что это явление может быть связано с хелатированием двухвалентных ионов Ca2+ и Mg2+ или связыванием электронов и утилизацией супер активных радикалов HOCl из многоядерных лейкоцитов. Была доказана положительная корреляция между силой торможения синтеза различных провоспалительных факторов и хемокинов, и гидрофобными свойствами антибиотиков из этой группы и степенью накопления антибиотика внутри фагоцитов. В этом отношении антибиотиком с самыми выраженными свойствами считается доксициклин.

Ряд исследований в этой области также касается сульфонамидов и триметоприма. Препараты этих групп блокируют путь синтеза фолиевой кислоты ингибируя активность дигидроксистероидной синтетазы или редуктазы дигидрофолиевой кислоты. Было доказано, что триметоприм отдельно, или в комбинации с сульфонамидами (например, сульфаметоксазолом) проявляет сильнейшее моделирующее действие на функции многоядерных лейкоцитов. Это соединение ингибирует хемотаксис нейтрофилов ингибируя пути PLD-PPH, что приводит к подавлению выработки свободных радикалов, а также влияет на функционирование цитоплазматических мембран. К сожалению, все перечисленные эффекты наблюдаются при применении доз, превышающих терапевтические концентрации, что на практике исключает применение триметоприма, в качестве иммуномодулирующего вещества. Сульфаниламиды, в том числе сульфасалазин и сульфаметоксазол, ингибируют фагоцитарные процессы в клетках.

Влияние антибиотиков на специфический иммунитет

Влияние антибиотиков на специфический иммунный ответ сравнительно мало изучено. Данные, касающиеся того, модулируют ли, антибиотики специфический иммунный ответ достаточно ограничены, но, известно, что существует зависимость между антибиотикотерапией и продукцией специфических антител, а также образованием Т-лимфоцитов.

Халифа и др. исследовали влияние антибиотикотерапии при вакцинации кур против болезни Ньюкасла (ND) на иммунный ответ к вирусу болезни Ньюкасла (NDV). Оказалось, что тилкомизин, фторфеникоа, а также энрофлоксацин снижали синтез специфических антител к NDV. Кроме того, при применении антибиотиков перорально было отмечено влияние на клеточный иммунитет. Это было связано, скорее всего, с прямым воздействием антибиотиков на физиологическую флору желудочно-кишечного тракта и изменение ее состава.

Рошковски и др, продемонстрировали, что бета-лактамные антибиотики ингибировали гуморальный и клеточный иммунный ответ. Кроме того, существенно нарушали пролиферативную активность лимфоцитов. Супрессия гуморального и клеточного ответа наблюдалась также при 7-дневном лечении цефотаксимом и амикацином, но в гораздо меньшей степени, чем это имело место при применении пиперациллина и мезоцилина. Кроме того, показатели иммунного ответа быстрее возвращались в норму.

Исследования иммуномодулирующего влияния тетрациклинов на специфический ответ проводились несколькими научно-исследовательскими группами. Белласене и др. исследовали влияние доксициклина на специфическую реакцию клеток у мышей. У животных, которым давали доксициклин в дозе, соответствующей терапевтической дозе для человека, наблюдалось существенное снижение титров специфических антител. Исследование влияния доксициклина на поствакцинальный иммунный ответ проводили также на мышиной модели Воо и до. Кроме того, в своих исследованиях они использовали также кларитромицин и ампициллин. Результаты их исследований показали, что ранний специфический гуморальный ответ (IgM) на токсин столбняка, пневмококков и вируса гепатита B, был нарушен у мышей, получавших кларитромицин и доксициклин. Как показывают результаты ранее опубликованных исследований как кларитромицин, как и доксициклин, in vitro, могут ингибировать продукцию цитокинов T-лимфоцитами. Это явление полностью не объясняет ингибирование гуморального иммунного ответа после применения указанных антибиотиков, так как более низкие титры антител наблюдались также в отношении Т-независимого антигена. Кроме того, было доказано, что у мышей, получавших кларитромицин и вирус гепатита B, нарушилось также производство специфических антител класса IgG1 к этому вирусу. Что интересно, не наблюдалось негативного влияния после одновременного введения кларитромицина и других исследованных антигенов на производство и поддержание антител класса IgG1. Более того, после вакцинации мышей живым аттенуированным штаммом S. typhi, титр антител был выше у животных, получавших одновременно кларитромицин, ампициллин или доксициклин. Таким образом, кажется, что воздействие данного антибиотика на специфический, поствакцинальный иммунный ответ может зависеть не только от самого используемого препарата, но также и от типа антигена (вакцины).

Другие исследователи доказали, что фторхинолоны, моксифлоксацин и ципрофлоксацин имеют выраженное влияние на экспрессию цитокинов, вырабатываемых лимфоцитами Th1 и Th2, без влияния на отношение друг к другу обоих популяций, в то время как кларитромицин вызывает меньшую секрецию IL-4, что приводит к росту показателя Th1/Th2 (увеличение числа лимфоцитов Th1). Лимфоциты хелперы (Th) выполняют очень важные функции как в процессах гуморального, так и клеточного иммунитета. Определенный тип иммунного ответа, связан, в частности, с дифференцированием себя прекурсоров вспомогательных Т-клеток (Th0) в клетки Th1 или Th2. Этот процесс в значительной степени зависит от локальных концентраций цитокинов, типа антигена и презентации антигена. Каждая субпопуляция клеток выделяет характерный профиль цитокинов, который вызывает дальнейшую дифференциацию определенной субпопуляции клеток. Лимфоциты Th1 продуцируют, прежде всего, IFN-γ, который стимулирует развитие клеточного иммунитета, а лимфоциты Th2 секретируют преимущественно IL-4 и способствуют тем самым развитию гуморального иммунитета. Таким образом, воздействуя на профиль цитокинов, выделяемых иммунологическими клетками, мы можем в определенной степени управлять иммунным ответом, так, чтобы он развивался в интересующем нас направлении.

В данном аспекте влияние антибиотиков из группы цефалоспоринов (цефотаксим, цефодизим) проанализировал также Пулверер. на мышиной модели. Антибиотики вводились в дозах, соответствующих терапевтическим дозам, применяемым в медицине человека, в течение 7 дней. В ходе антибиотикотерапии мышей вакцинировали (внутрибрюшинно) модельным антигеном (эритроциты овцы, SRBC). Как показали результаты исследований, цефодизим, в отличие от цефотаксима, не нарушал производства специфических антител класса IgM и IgG, не имел он также влияния на клеточный иммунитет, оцениваемый с помощью пролиферативного анализа лимфоцитов и гиперчувствительности позднего типа. А вот у животных, получавших цефотаксим, наблюдалось значительное, продолжительное ингибирование выработки антител класса IgM и IgG, а также ослабление пролиферации лимфоцитов в ответ на знакомый антиген.

В исследованиях по обсуждаемому вопросу, проводимых на Кафедре Болезней Свиней в ГВИ-ГИИ в Пулавах, у свиней, которых вакцинировали во время проведения антибиотикотерапии, не было замечено отрицательного влияния доксициклина, применяемого в терапевтических дозах, на специфический гуморальный ответ, а в пролиферативном анализе (оценка специфического клеточного ответа) наблюдался ослабленный специфический ответ лимфоцитов, а также существенно более низкая секреция IFN-g в ответ на знакомый антиген. Не наблюдалось также влияния 7-дневной антибиотикотерапии на концентрации иммуноглобулинов всех классов в сыворотке крови, а также на параметры лейкоцитарной системы. Кроме того, мы доказали, что у свиней, получавших доксициклин, в ходе проведения вакцинации число дважды позитивных лимфоцитов CD4+CD8+ (эффекторные лимфоциты и лимфоциты иммунологической памяти) было существенно ниже по сравнению с контрольными свиньями (не получавшими антибиотики во время вакцинации).

Подводя итог, полученные результаты показали негативное влияние доксициклина на клеточный поствакцинальный ответ после применения в качестве модели живой вакцины против болезни Ауески (бА). Результаты очередного опыта показали, что энрофлоксацин, применяемый в период вакцинации, негативно влияет как на гуморальный, так и на клеточный поствакцинальный ответ (в отношении вируса бА). В случае вакцинации против гриппа свиней нарушается гуморальный ответ, но специфической пролиферации после стимуляции SIV не было зафиксировано ни в одной из вакцинированных групп. Было обнаружено также влияние энрофлоксацина на секрецию IL-6, IL-10 и TNF-α из-за PBMC после стимуляции вирусом бА. Не было замечено влияния энрофлоксацина на параметры лейкоцитарной системы (число и процент лимфоцитов, гранулоцитов), а также на концентрацию иммуноглобулинов в сыворотке крови. Было показано также, что этот химиотерапевтический препарат влияет на численность отдельных субпопуляций лимфоцитов у свиней (снижение числа и процента лимфоцитов CD8+).

Результаты очередного этапа исследований показали, что сертиофур, применяемый свиньями в период проведения вакцинации, негативно влияет как на гуморальный, так и на клеточный поствакцинальный ответ (в отношении вируса бА). В случае инактивированной вакцины от гриппа нарушался только гуморальный ответ. Было выявлено также негативное влияние сертиофура на секрецию IFN-γ из-за PBMC после стимуляции вирусом бА. В тоже время не было выявлено влияния на количество и процент лимфоцитов и нейтрофилов, а также на концентрацию отдельных классов иммуноглобулинов в сыворотке крови. В цитометрическом анализе было показано существенное снижение числа и процента лимфоцитов CD8+ и CD4+CD8+ у свиней, получавших сертиофур.

Результаты других исследований в этой области показывают, что вакцинация свиней от рожи при некоторых антибиотиках может вызвать снижение (сертиофур, доксициклин, тиамулин) или усиление (амоксициллин, тулатромицин) производства специфических антител.

Полученные результаты указывают на существенное, по большей части негативное, влияние исследуемых антибиотиков, примененных в терапевтических дозах, на развитие и/или сохранение поствакцинального гуморального и/или клеточного иммунитета. В связи с этим при планировании вакцинации свиней следует учесть возможные взаимодействия между иммунной системой и антибиотиками. Поскольку антибиотики широко применяются в лечении и метафилактике болезней животных, необходимы дальнейшие исследования, чтобы более точно оценить может ли влияние антибиотиков на иммунную систему иметь реальное клиническое значение в медицине и ветеринарии. Несмотря на то, что до сих пор данные об иммуномодулирующих свойствах антибиотиков являются неполными, однако, в большинстве опубликованных исследований было показано иммуносупрессивное воздействие антибиотиков в отношении специфического иммунного ответа in vivo, в том числе поствакцинального ответа. Кроме того, ряд антибиотиков имел противовоспалительное действие, которое может быть преимуществом в случае лечения хронических, системных или протекающих с острым воспалительным процессом инфекций. Учитывая представленные данные, при планировании рациональной химиотерапии, кроме спектра антибактериального действия, следует принимать во внимание также возможное влияние этого антибиотика на иммунную систему. В связи с тем, что точный механизм взаимодействия требует более глубокого выяснения, текущие данные должны быть толчком для дальнейших исследований, особенно в отношении практической ценности этих явлений и их клинических импликаций.

Наверх